ООО "Аналитик-ТС"

Анализаторы систем передачи и кабелей связи

AnCom A-7

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

4221-009-11438828-17PЭ-1-1

Измерение кабелей

Документ A7re7_105 (июнь 2017)

Содержание

1.	Общие положения	2
2.	Измерительные конфигурации	3
2.1	Измерение емкости методом 3 по ГОСТ 27893-88	4
2.2	Измерение переходного затухания на ближнем конце методом 5 по ГОСТ 27893-88.	9
2.3	Измерение защищенности на дальнем конце методом 5 по ГОСТ 27893-88	12
2.4	Измерение частотных характеристик кабеля методом 6 по ГОСТ 27893-88	16
2.5	Измерение сопротивления жилы	21
2.6	Рефлектометрические измерения	22
3.	Литература	23

1. Общие положения

Технические характеристики анализаторов систем передачи и кабелей связи AnCom A-7 (далее – анализаторы, анализатор) приведены в РЭ-1-1 (части 1 руководства по эксплуатации). Кроме того часть РЭ-1-1 определяет эксплуатационные ограничения анализатора и поэтому должна быть обязательно изучена перед выполнением измерений.

Возможности программного обеспечения (ПО) анализатора для персонального компьютера (ПК) описаны в РЭ-1-2.

РЭ-1-3 - определяет порядок применения анализатора при контроле параметров оконечного оборудования цифровых абонентских линий (xDSL).

РЭ-1-4 определяет возможности анализатора применительно к контролю кабельных линий связи при их использовании для создания xDSL.

Настоящая часть - РЭ-1-7 - описывает возможности анализатора применительно к измерениям характеристик кабелей. Характеристики некоторых кабелей связи представлены в [1-4].

Измерение кабелей выполняется с использованием методов измерений 3, 5 и 6 в соответствии с **ГОСТ 27893-88** [5], для чего в комплект поставки ПО анализаторов включены соответствующие конфигурации -

...А-7\Config\Кабели.

При контроле кабелей могут быть применены нормы, представленные в таблице 7

разработке измерительных Характеристики некоторых кабелей представлены в

Материал настоящей части РЭ

может быть использован при

справочниках и в 4-й части РЭ

Описанные в настоящей части конфигурации размещены в директории А-7\Config\Кабели

ГОСТ Р 53538-2009 [6] и рекомендации МСЭ-Т L.19 [7]. Шаблоны частотных характеристик (ЧХ) переходных влияний из [6] и [7] включены в комплект поставки ПО анализатора как маски - ...А-7\Masks\Кабели.

При выполнении измерений используются следующие режимы анализатора:

- СуперСел измерение электрической емкости и расчет емкостной асимметрии,
- измерение сопротивления, коэффициента затухания, коэффициента фазы и импеданса,
- МЧС (многочастотный) определение частотных характеристик переходных влияний,
- ПСС (псевдослучайный) при рефлектометрических измерениях.

При измерениях устанавливаются электрические режимы **XX** – холостого хода и **K3** – короткого замыкания. Режимы должны быть обеспечены:

- на окончании соединительного кабеля, подключенного к анализатору, при калибровке анализатора, выполняемой в целях компенсации собственной погрешности анализатора и влияния емкости (XX), сопротивления и индуктивности (K3) соединительного кабеля;
- на окончании **измеряемого кабеля** при измерении емкости (**XX**), сопротивления (**K3**), импеданса, коэффициентов затухания и фазы (**XX-K3**).

2. Измерительные конфигурации

Измерительные конфигурации представляют собой набор параметров настройки, загрузка которых обеспечивает выполнение конкретной измерительной процедуры, назначение которой определено названием файла конфигурации. Для выбора конфигурации следует:

• нажать [F3] и выбрать в директории А-7 директорию Config

Загрузить фа	айл конфигурац	ии			<u>?</u> ×
Папка: 🗀	A-7		• 🗢	🗈 💣 🎟	
A7_LCD Config Data Help Masks Picture Report					
Имя файла: Тип файлов:	Файл конфигур	рации([*] .cfg)	•	Откр	ыпь ена

• в директории Config выбрать директорию Кабели

Загрузить файл конфигурации	? ×
Папка: 🗀 Config 📃 🗢 🖻 📸 📰 -	
E1 HDSL SHDSL_128-TCPAM SHDSL_128-TCPAM SHDSL_128-TCPAM SHDSL_128-TCPAM SHDSL_128-TCPAM SHDSL_128-TCPAM Kafeant Кабели Поверка Gafault1.cfg	
Имя файла: Откры	ль
Тип файлов: Файл конфигурации(*.cfg) 💽 Отме	на

в директории Кабели выбрать необходимую конфигурацию:

Загрузить файл конфигурации	<u>?</u> ×
Папка: 🗀 Кабели 💌 🖛 🗈 📸 🏢 🗸	
на - Ср_(XX) - А-7_RTx к паре; Задать Lкаб; Последовательно - (о)XX калибр, (о) КЗ калибр, (о)Zxx измерять.cfg	
са _мэ-о - Gen - 1-и А-7_ктк к олижнему концу на пару-1.crg 🔐 _м5-1 - An1 - 2-й А-7_RTx к ближнему концу на пару-II. Результат=[Сел.уровни]=NEXT - уточнить Норму_сверху.cfg	
на пару-I. Вимание у Сарание и сору-I. Внимание! Установить График[Сел.уровни] как Маску_сверху.cfg м.	
ино - Zв_а_b_(XX-K3) - А-7_RTx к паре; Задать Lкаб; Последовательно - (о)XX калибр, (о) КЗ калибр, (о)Zxx изм, (о)Zk3 изм.cfg	
на кадор - Алдата к паре, задате скао, последователено - (ода калиор, (одек калиор, (одек измеряте.crg В Рефлектометр - А-7_RTx к паре; На дальнем конце - XX; Уточнить Скорость; Результаты=Рефлектограмма, ДлинаЛинии.cfg	
Имя файла:м3 - Ср_()X) - А-7_RTx к паре; Задать Lкаб; Последовательно - (о)XX калибр, (о) K3 калибр, (о) Zxx измерять.cfg	пь
Тип файлов: Файл конфигурации(*.cfg)	на

После загрузки выбранной конфигурации для получения результатов измерений следует выполнить описанные ниже применительно к каждой конфигурации действия.

2.1 Измерение емкости методом 3 по ГОСТ 27893-88

Емкость пары или емкость между жилами разных пар определяются с применением конфигурации

м3 - Cp(XX) - А-7_RTx к паре; Задать Lкаб; Последовательно - (о)XX калибр, (о)K3 калибр, (о)Zxx измерять.cfg.

В названии конфигурации отражены следующие сведения и указания:

- мЗ
- используется метод 3 по ГОСТ 27893-88 [5];
- Ср_(XX) измеряется рабочая емкость в режиме XX на дальнем конце кабеля;
 - А-7_RTx к паре пара подключается к разъему RTx анализатора;

сразу после загрузки конфигурации начинается измерение, при котором погонная емкость вычисляется для значения физической длины кабеля равной 1000 м; для обеспечения измерения погонной емкости образца кабеля действительной длины следует: остановить измерение кнопкой **Стоп** и далее:

- Задать Lкаб
- Последовательно выполнить калибровку в режимах:
 - XX калибр XX на окончании соединительного кабеля,
- **• КЗ** калибр
- • Zxx измерять
- КЗ на окончании соединительного кабеля и только после этого,
 - ть установив режим XX на окончании измеряемого кабеля,

задать физическую длину образца кабеля **Lкаб** в метрах;

выполнить измерение погонной емкости.

Непосредственно после загрузки конфигурации анализатор приступает к измерению емкости пары или иного подключенного объекта (емкость между жилой и экраном, между жилой А пары-I и жилой А/Б пары-II) и определяет погонную емкость как частное от деления измеренной емкости на заданную длину кабеля **Lкаб**. По умолчанию в конфигурации **Lкаб=1000 м**, поэтому индицируемая величина погонной емкости в единицах «нФ/км» численно равно емкости пары в «нФ».

Кроме того при таком первичном измерении не компенсируются собственные погрешности анализатора, а так же емкость, сопротивление и индуктивность соединительных проводов.

Для измерения погонной емкости и снижения погрешности измерения следует задать значение физической длины контролируемого образца **Lкаб** в метрах и выполнить предварительную калибровку.

Калибровка в режиме ХХ на конце соединительного кабеля:

Калибровка в режиме КЗ на конце соединительного кабеля:

Измерение погонной емкости:

Измерение емкости автоматически производится на частотах, определенных Набором частот, который в данной конфигурации составляет 1, 2, 4, 8,...1024 кГц. Если емкость измеряемого объекта мала (короткий образец кабеля), то измерительная частота **Fизм,кГц**, на которой производится определение величины емкости, будет выбрана повышенной. Значения в **Наборе частот** могут быть скорректированы пользователем.

2.2 Измерение переходного затухания на ближнем конце методом 5 по ГОСТ 27893-88

Для измерения переходного затухания на ближнем конце используются два анализатора и применяются конфигурации, в названии которых отражены следующие сведения и указания:

_м5-0 - Gen - 1-й А-7_RTx к ближнему концу на пару-l.cfg:

- м5
- Gen

- используется метод 5 по ГОСТ 27893-88 [5]; генератор
- 1-й A-7_RTx к ближнему концу на пару-I к RTx 1-го анализатора подключается пара-I;

_м5-1 - An1 - 2-й А-7_RTx к ближнему концу на пару-II. Результат=[Сел.уровни]=NEXT уточнить Норму_сверху.cfg:

- м5
- An1

- используется метод 5 по ГОСТ 27893-88 [5] для измерения переходного затухания An1,
- 2-й A-7_RTx к ближнему концу на пару-II пара-II подключается к RTx 2-го анализатора,
- Результат=[Сел.уровни]=NEXT
- уточнить Норму_сверху

результат измерений - в форме [Сел.уровни]

для соотнесения результата и необходимой нормы ее следует уточнить, выбрав нужный шаблон из директории **Masks\Кабели**.

Исполнение конфигурации

_м5-0 - Gen - 1-й А-7_RTx к ближнему концу на пару-I.cfg

включает генератор МЧС с уровнем 0 дБм и количеством гармонических составляющих 200, что определяет уровень каждой составляющей равным 0 дБм-10×lg(204)=-23,1 дБм0, отсчитанного относительно опорного уровня 0 дБмо при выходном импедансе равном 120 Ом.

n 🕂 🕂 А-7-С:\AnCom\A-7\Config\Кабели_м5-0 - Gen - 1-й А-7_RТх к ближнему концу на пару-I.cfg		- 🗆 ×
Управление Настройки Сигналы Опции Окна Помощь	Старт/Стоп Формы представления Масштабирование Курсоры	
Генератор 120 Ом/МЧС/0 дБм0/20-4080 кГц	💉 🔂 🖾 📰 🔛 🕅 🔺 🔶 🔸	→ .
Измеритель 120 Ом/ШУМ/-9 дБм/10-4096 кГц/00:05		
<mark>И</mark> Настройки прибора		
Общие Генератор Измеритель Мастер частоты Мастер уровня СуперСел		
SIN L 0 🚖 дБм0 🔣 ЦЦЦСТ L 0 🜩 дБм0		
уд.SIN F 400 🕏 кГц уд.МЧС F1 20 🐳 кГц		
SIN2 L -2 ≠ дБм0 N 204 ≠		
уд.SIN2 F1 1800 🗲 кГц dF 20 🜩 кГц		
F2 2560 🗲 кГц FN 4080 кГц		
ПСС		
уд.ПСС Ц 2 € дБм0 уд.ШУМ Ц 7 € дБм0		
Блокировка уд.Блокировка		

Исполнение конфигурации -

_м5-1 - An1 - 2-й А-7_RTx к ближнему концу на пару-II. Результат=[Сел.уровни]=NEXT уточнить Норму_сверху.cfg

позволяет измерить уровни гармоник МЧС, численные значения которых отсчитываются относительно опорного уровня -23,1 дБмо.

Таким образом, значения уровня в форме [**Сел.уровни**] по абсолютной величине равны величине переходного затухания на ближнем конце **An1** (часто обозначается как **NEXT** – Near End croSS Talking – переходный разговор на ближнем конце).

Введение Нормы сверху позволяет сопоставить характеристику переходных помех с нормой.

Наихудшее значение рассогласования Нормы сверху и Результата измерений представляется параметром ШУМ: Качество,дБ, являющегося результатом исполнения конфигурации.

Сопоставление производится в области частот общей для Нормы и Результата.

Для уточнения маски Нормы сверху необходимо:

• мышкой «ткнуть» в строку Сел.уровни,дБм0 формы [ШУМ - Результаты измерений] - откроется форма настройки [ШУМ – Настройка параметров]

В форме [ШУМ - Настройка параметров]

 «ткнуть» мышкой в поле имени файла маски Нормы сверху - откроется форма [Выбор маски].

Для создания новой маски в меню Настройки выбирается Редактор масок

🏘 А7_307 С:\\А-7_307\Config\Кабели_м5-1 - An1 - 2-й А-7_					
Управление	Настройки	Сигналы	Опции	Окна	Помощь
П Генератор	Общие				F4
	Генератор)			F5
Измеритель	Измерител	њ			F6
	Мастер ча	стоты			F7
и - Резул ИУМ - Резул	Мастер ур	овня			F8
	СуперСел				F9
Параметр	SYNC				
Канество аБ	De company annual				
	Редактор масок				
Сел, уровни, дБм(Редактор взвешивающей характеристики				

В форме [Выбор маски]

- кнопкой [<] удалить предыдущий файл из окна Выбранные маски,
- указать новый файл в списке Доступные маски и
- ввести выбранный файл кнопкой [>].

В [Редакторе масок] следует

- указать тип маски Сел./Сел.взв.уровни,
- ввести данные маски (обязательно),
- комментарий (при необходимости) и
- сохранить файл, дав ему содержательное имя (желательно)

📗 Файл 💌 📄 🛅 🖶 🚔 📫 📫	Сел./Сел.взв.уровн 💌		
Комментарий:	кГц	дБмО	
<u> </u>	1	90	•
	3	83	
	10	75	
	30	68	
	100	60	
	300	53	
	1000	45	
	3000	38	
			1

2.3 Измерение защищенности на дальнем конце методом 5 по ГОСТ 27893-88

Для измерения защищенности от переходных влияний на дальнем конце используются два анализатора. Измерение выполняется в два шага.

анализатора,

На шаге-1 измеряется рабочее затухание пары, для чего применяются конфигурации:

_м5-0 - Gen - 1-й А-7_RTx к ближнему концу на пару-l.cfg (та же что в п.2.2);

_м5-2 - А0 - 2-й А-7_RTx к дальнему концу на пару-І. Внимание! Установить График[Сел.уровни] как Маску_сверху.cfg:

- используется метод 5 по ГОСТ 27893-88 [5];
- измеря
- 2-й А-7_RTx к дальнему концу на пару-I

м5

A0

•

- измеряется рабочее затухание пары-I дальний конец пары-I подключается к RTx 2-го
- Установить График[Сел.уровни] как Маску_сверху

результат измерений - в форме [Сел.уровни]; для последующего использования следует сохранить его в файле Маски сверху.

Исполнение конфигурации шага-1 -

_м5-2 - А0 - 2-й А-7_RTx к дальнему концу на пару-І. Внимание! Установить График[Сел.уровни] как Маску_сверху.cfg

позволяет измерить уровни гармоник МЧС, численные значения которых отсчитываются относительно опорного уровня -23,01 дБм0 и представляются в форме [Сел.уровни].

Таким образом, значения уровня по абсолютной величине равны величине рабочего затухания в паре **A0** (часто обозначается как Insert Loss – **IL** – внесенные потери).

Для того, чтобы на втором шаге измерений частотная характеристика рабочего затухания была бы учтена при расчете защищенности, значения уровней формы [**Сел.уровни**] следует сохранить.

Для сохранения следует:

- «ткнуть» мышкой в поле графика формы [Сел.уровни],
- в открывшемся меню выбрать пункт Установить график как маску сверху и
- в ответ на предложение сохранить график с именем Сел.уровни и расширением 7sf выбрать папку Кабели и согласиться, нажав [Сохранить].

После сохранения маска будет отображена на форме [Сел.уровни].

На шаге-2 настройка и подключение генераторного анализатора сохраняется, а на втором, измерительном анализаторе используется конфигурация:

_м5-3 - АІ1 - 2-й А-7_RTx к дальнему концу на пару-II. Результат=[Сел.взв.уровни]=ELFEXT уточнить Hopмy_сверху.cfg:

- м5
- используется метод 5 по ГОСТ 27893-88 [5]; AI1 измеряется защищенность на дальнем конце,
- 2-й А-7_RTx к дальнему концу на пару-II дальний конец пары-II подключается к RTx 2-го
- Результат=[Сел.взв.уровни]=ELFEXT
- уточнить Норму_сверху

анализатора, результат измерений - в форме [Сел.взв.уровни];

для соотнесения результата и необходимой нормы ее следует уточнить, выбрав нужный шаблон из директории Masks\Кабели.

Файл результатов измерений рабочего затухания, сохраненный на Шаге-1 - Сел.уровни.7sf, задан в конфигурации как файл Взвешивающей характеристики, что позволяет получить значения уровня с окне [Сел.взв.уровни] соответствующими защищенности от переходных помех на дальнем конце.

🐗 А-7 С:\AnCom\A-7\Config\Кабели_м5-3 - Аl1 - 2-й А-7_RTx к дальнему концу на	а пару-II. Результат=[Сел.взв.уровни]=ELFEXT - уточнить Норму_сверху.cfg 📃 📃					
Управление Настройки Сигналы Опции Окна Помощь	Старт/Стоп Формы представления Масштабирование Курсоры					
📕 Генератор 120 Ом	💉 🗗 🚾 🖬 🚼 🕅 🕅 🔶 🔶 🔶					
Измеритель 120 Ом\ШУМ\-9 дБм\10-4096 кГц\00:05						
🗛 ШУМ - Результаты измерений	и инистрании измерений Сала измерений Сала и инистра и инистра и инистра и инистра и инистра и инистра и инистр					
Параметр Значение Норма сверху Запас	Общие Генератор Измеритель Мастер частоты Мастер уровня СуперСел					
КачестводБ 15.68 >=0	Импеданс, См 🗋 низкоомно 120 😴 Импеданс, См 🗋 высокоомно 120 😴					
Сельзь, уровнидБмО Норма Kaitedow.caite	Поре, домо					
ј 📌 Сел.взв.уровни 💶 🗙	Макс. уровень, дБм Гавтомат 🧐 💌					
норма сверху: Al1_ELFEXT_100%_ГОСТ_P_53538.7sf	<u> Установить</u>					
10 -10 -20 -30 -40 -50 -50 -60 -70 -30 -100 -100 -20 -00 -100 -20 -00 -00 -00 -00 -00 -00 -	Режим анализа Счет случайных событий Прецизионный анализ (разрешение спектра, кГц) 5 У Установить Управление удаленным А-7 L 2 дБм С Запретить обмен Г1 10 КГц Установить соединение F2 260 КГц Потемать соединение F2 260 КГц Становить соединение F2 260 КГц Потемать соединение F3 10 КГц Разрешить соединение F3 10 КГц Разрешить соединение F3 10 КГц Разрешить соединение F3 260 КГц Потемать соединение F3 260 КГц Потемать соединение F4 260 КГц Разрешить соединение F4 260					
υ 1000 2000 3000 4000 κΓιμ	15.68					

Таким образом, значения уровня в форме [**Сел.взв.уровни**] по абсолютной величине равны величине защищенности от переходных помех на дальнем конце **Al1** (часто обозначается как **ELFEXT** – Equal Level of Far End croSS Talking – эквивалентный уровень переходного разговора на дальнем конце).

Введение Нормы сверху позволяет сопоставить характеристику переходных помех с нормой.

Наихудшее значение рассогласования Нормы и Результата измерений представляется параметром ШУМ: Качество, дБ, являющегося результатом исполнения конфигурации.

Сопоставление производится в области частот общей для Нормы и Результата.

Уточнение маски Нормы сверху выполняется аналогично тому, как это описано в п.2.2.

2.4 Измерение частотных характеристик кабеля методом 6 по ГОСТ 27893-88

Измерение частотных характеристик волнового сопротивления, коэффициента затухания и коэффициента фазы выполняется методом XX-K3 с применением конфигурации м6 - ZB a b (XX-K3) - A-7 RTx к паре: Задать Lкаб: Последовательно - (о)XX калибр. (о) K3

_мь - ∠в_а_р_(XX-I калибр. (о)Zxx изг	(3) - А-7_КТХ к паре; Задать I м. (о)Zкз изм.cfg. Название вь	скаю; последо важает послед	овательно - (о)хх калиор, (о) ко повательность действий:			
M6	Метод 6 по ГОСТ 27893-88 [5] обеспечивает измерение					
Zваb(XX-K3)	модуля волнового сопротивления (Zв),					
/	коэффициента затухания (а) и	и коэффициент	та фазы (<mark>b</mark>)			
	в режимах холостого хода (🗙	🔇) и короткого з	замыкания (<mark>КЗ</mark>),			
	последовательно	📌 Настройки прибора	X			
	устанавливаемых на	Общие Генератор Изм	еритель Мастер частоты Мастер уровня Цуперцел Генератор Измеритель			
А-7_RTx к паре	дальнем конце пары,	 прямой порядок обратный порядок 	0 👮 дБм0 Полоса селекции, кГц 0.02 🚖			
	олижний конец которой	о Набор	Диапазон частот Частота селекции, кГц 32			
		[™] частот, кГц ⊅1 ±1 🖓 ±1	N 256			
Залать I каб			dF 4 🚖 кГц Взвеш.характер-ка: АЧХ относительно:			
Садать Екас	измерений спелует.		FN 1021 кГц Опорного уровня			
	• Уточнить	512 1024	Ген 🔲 Опора, кГц 100 💽 С прямой 💿 инверсный			
	диапазон частот и		Изм 🔲 Опора, КГц 100 😇 Спрямой 🏵 инверсный			
	шаг изменения частоты,	,	Калибровка Z: 🖸 💥 🔿 КЗ 🔿 боо 📑 Ом 🗹 маска свержу			
	• Задать физическую	l c				
	длину образца кабеля		О Скан. от Fc1 0.3 🚽 до FcN 3.4 🔄 🔿 С следа			
	Lкаб (здесь - 18,5 м).	Старт Стоп (О Мониторинг уровня по порядку частот			
Последовательно	Подключить соединительный	кабель к RTx.	Последовательно калибровать			
	анализатор в XX и КЗ для ком	пенсации влия	ания соединительного кабеля.			
⊙ XX калибр	Разомкнуть концы на		Калибровка Z: 💽 🔀 🔿 КЗ 🔿 🔂 🚖 Ом			
	окончании соединительного		О Z О Zxx О Zks Lkaб 18.5 🚔 м			
	кабеля - режим хх, нажать		🔿 Скан. от Fc1 0.3 🔿 до FcN 3.4 🔿 кГц			
	старт для калиоровки.	Старт Стоп	О Мониторинг уровня по порядку частот			
⊙ КЗ калибр	Замкнуть концы на		Калибровка Z: 💽 💥 💽 КЗ 🔿 🔂 🌩 Ом			
	окончании соединительного		О Z О Zxx О Zkз Lkaб 18.5 🗲 м			
	кабеля - режим кз, нажать		🗢 Скан. от Fc1 0.3 🔹 до FcN 3.4 🔹 кГц			
	Старт для калиоровки.	Старт Стоп	С Мониторинг уровня по порядку частот			
	Подключить измеряемый кабе	ель к окончани	ю соединительного кабеля.			
	Последовательно измерить	импеданс кабе	еля с XX и КЗ на его окончании.			
⊙ Zxx изм	Установить режим X на		Калибровка Z: 🖸 🔀 🖸 K3 🔿 600 🚖 Ом			
	окончании измеряемого		🔿 Z 💽 Zxx 🖸 📿 Zks Цкаб 18.5 🛫 м			
	кабеля; нажать старт для		🔿 Скан. от Fc1 0.3 🚖 до FcN 3.4 🔿 кГо			
	Г-то измерения.	Старт Стоп	О Мониторинг уровня по порядку частот			
• Zкз изм	Установить режим <mark>КЗ</mark> на		Калибровка Z: 🖸 🔀 💽 КЗ 🔿 600 📑 Ом			
	окончании измеряемого		О Z 🛛 🔼 ХХХ 💽 ДКАВ 18.5 🚔 М			
	кабеля; нажать Старт для		О Скан от Ес1 0.3			
	2-то измерения.	Старт Стоп	О Мониторинг уровня по порядку частот			
Будут определены волновое сопротивление, коэффициенты затухания и фазы.						
♣ СуперСел: Z	• Сел.уро 💶 🗵 👫 СуперСел: Zв(f)					
		Ом кГц (
		124.98 9.00	105.52 13.00 99.21 17.00 95.38 V			
1 000	Кіц СуперСел: a(f)					
§ 500-1	ц дБ/км к 200-					
кГц						
Кри рад/км кГи	30	, 300 400 500	кГц			

ц,

10-

0-16

Ó

400

100

500

200

600 кГц 300

700

400

800

500

900

600 кГц

1000

700

1100

800

1200

900

1000

1100

☑ Zxx ☑ Zx3 Lkać 18.5

л Fc1 0.3 🚔 до FcN 3.4

оринг уровня по порядку частот

5.00

100

200

300

1.00

pag/km

0.09

80-3

60-

40

20-0-

ό

ямой 💿 инверсный

трямой © инверсный ставороный фаб П Непрерывно

 до
 Пепрересси

 Ом
 ✓ маска сверху

 Ом
 ✓ маска сверху

 М
 ✓ паска снизу

 КГц
 С гледа

1200

Подробное изложение последовательности операций, выполняемых после загрузки конфигурации.

Калибровка в режиме XX на конце соединительного кабеля:

Калибровка в режиме КЗ на конце соединительного кабеля:

Измерение частотных характеристик методом ХХ-КЗ.

Задается физическая длина кабеля Lкаб.

Первое измерение производится в режиме ХХ на удаленном конце измеряемого кабеля:

Измерение частотных характеристик методом ХХ-КЗ.

Второе измерение выполняется в режиме КЗ на удаленном конце измеряемого кабеля:

Измеренные частотные характеристики представлены в формах, каждая из которых может быть раскрыта на весь экран и просмотрена в табличном или графическом формате:

- [СуперСел: Zв(f)] волновое сопротивление;
 - [СуперСел: a(f)] коэффициент затухания;
- [СуперСел: b(f)] коэффициент фазы.

Параметры настройки **Диапазона частот** или заданные значения в **Наборе частот** могут быть скорректированы пользователем. Кроме того могут быть изменены уровень сигнала **Генератор**а (увеличение уровня может привести к **перегрузке анализатора** при измерениях, что недопустимо) и **Полоса селекции** (уменьшение полосы повышает защищенность от возможных помех, наводимых на окончании кабеля, но приводит к увеличению времени измерений). После любого изменения необходимо выполнить калибровку импеданса.

Изменение значения длины образца измеряемого кабеля **Lкаб** не требует повторной калибровки импеданса. Длину образца желательно выбирать в пределах 20...1000 м.

2.5 Измерение сопротивления жилы

Сопротивление жилы определяется с применением конфигурации **Рж (K3) - А-7 RTx к паре: Задать Lкаб: Последовательно - (о)XX калибр, (о)K3 калибр** (о)Zкз измерять.cfg.

В названии конфигурации отражены следующие сведения и указания:

- **Rж** (K3) измеряется сопротивление жилы в режиме КЗ на дальнем конце;
 - А-7 RTx к паре пара подключается к разъему RTx анализатора, после чего начинается измерение при физической длине кабеля равной 1000 м: для измерения погонного сопротивления жилы образца кабеля следует остановить измерение кнопкой Стоп и далее:
 - Задать Lкаб задать физическую длину кабеля Lкаб в метрах;
- Последовательно выполнить калибровку в режимах:
- XX калибр **XX** на окончании соединительного кабеля,
 - КЗ калибр КЗ на окончании соединительного кабеля и только после этого
- Zкз измерять

•

установив режим **КЗ** на окончании измеряемого кабеля.

Непосредственно после загрузки конфигурации анализатор определяет погонное сопротивление жилы как частное от деления половины измеренного сопротивления на заданную длину кабеля Lкаб=1000 м по умолчанию. При этом индицируемая величина погонного сопротивления в единицах «Ом/км» численно равна половине измеренного сопротивления в «Ом». Кроме того при этом не компенсируются погрешности. Поэтому, загрузив конфигурацию, следует задать **Lкаб**, откалибровать анализатор аналогично п.2.1 и только затем выполнять измерение.

2.6 Рефлектометрические измерения

Неоднородность кабеля можно определить применением конфигурации Рефлектометр - А-7_RTx к паре; На дальнем конце - XX; Уточнить Скорость; Результаты=Рефлектограмма, ДлинаЛинии.cfg

В названии конфигурации отражены следующие сведения и указания:

- Рефлектометр режим измерений рефлектометр;
- A-7_RTx к паре пара подключается к разъему RTx анализатора; сразу после загрузки конфигурации начинается измерение, при котором рефлектограмма строится для значения ½ скорости распространения Скорость,м/мкс=100;
- На дальнем конце XX; Уточнить Скорость для автоматического определения длины образца кабеля следует задать ½ скорости распространения электромагнитной волны в кабеле;
- Результаты=Рефлектограмма, ДлинаЛинии результаты измерений представлены на формах [ПСС: Амплитуда_отражений,%] [ПСС: Уровень отражений,дБ] и [ПСС: ДлинаЛинии,м].

При наличии режима XX на дальнем конце анализатор измеряет длину линии, рассчитывая ее значение по задержке отражения от дальнего конца с учетом заданной в форме настройки «Измеритель» значения ½ скорости распространения сигнала в измеряемом кабеле.

3. Литература

- [1] Брискер А.С. и др. Городские телефонные кабели. Справочник. М.: Радио и связь, 1991
- [2] Парфенов Ю.А. Кабели электросвязи. М.: Эко-Трендз, 2003
- [3] Воронцов А.С. и др. Коаксиальные и высокочастотные симметричные кабели связи. Справочник. М.: Радио и связь, 1994
- [4] Технологии широкополосного доступа xDSL. Инженерно-технический справочник. Под общей редакцией В.А. Балашова. - М.: Эко-Трендз, 2009
- [5] ГОСТ 27893-88. Кабели связи. Методы испытаний
- [6] ГОСТ Р 53538-2009. Многопарные кабели с медными жилами для цепей широкополосного доступа. Общие технические требования
- [7] МСЭ-Т L.19. Многопарные медные сетевые кабели, обеспечивающие одновременную работу нескольких служб таких как POTS, ISDN и xDSL. 11/2003

